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Abstract-This paper is concerned with the continuum formulation of a fully coupled thermo­
mechanical constitutive model for highly deformable bodies with viscous dissipation. The three­
dimensional material law is applicable to the thermomechanical characterization of elastomeric
(high-polymeric) solids in the finite strain domain under varying temperature. The description is
based on the concept of internal state variables and rational thermodynamics. The main goal of the
presentation is to develop consistent constitutive equations for the stress, entropy and independent
internal variables such that the second law of thermodynamics, in the form of the Clausius-Duhem
inequality, is satisfied. Motivated by the significant difference in bulk and shear response of elas­
tomers, the model employs a local decomposition of the deformation into a dilatational and an
isochoric part. The framework of nonlinear thermoviscoelasticity presented herein is formulated
entirely in the reference configuration and provides a sound continuum basis for approximation
techniques such as the Finite-Element method. Copyright © 1996 Elsevier Science Ltd.

1. INTRODUCTION AND OVERVIEW

The continuum approach to a thermodynamic theory of a highly deformable thermo­
viscoelastic medium undergoing large thermomechanical changes relative to an equilibrium
configuration is well established, see, e.g., the references by Truesdell and Toupin (1960),
Green and Adkins (1960), Koh and Eringen (1963), Coleman and Noll (1963), Truesdell
and Noll (1965), Chadwick and Seet (1971). As discussed in the review article by Hutter
(1977) there are two basic approaches to the thermodynamics of a continuous medium:
rational and irreversible thermodynamics. In the theory of rational thermodynamics the
second law [in the Truesdell-Toupin form of the local Clausius-Duhem inequality, see
Truesdell and Toupin (1960), eqn (258.3)] serves as a restriction on the constitutive equa­
tions for a continuous medium. Basically, the constitutive equations must be such that
every thermodynamical process leads to positive entropy production. Dissipative models
which satisfy this restriction-the so-called thermodynamically consistent constitutive equa­
tions-then satisfy balance laws and the second law of thermodynamics for any arbitrary
process in the body. This theory is in contrast to irreversible thermodynamics where the
second law serves as a restriction on the processes that can occur in the continuum body,
see Hutter (1977). Within the rational thermodynamics framework models for materials
with fading memory have been proposed by Coleman and Noll (1963), Coleman (1964a),
(1964b), see also Truesdell and Noll (1965), section 96. An application to elastic continua
under varying temperature using Coleman's unified thermodynamical theory (single­
integral laws) was recently proposed by Gurtin and Hrusa (1991). However, models
for fully coupled nonlinear thermoviscoelasticity which are applicable to numerous
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industrial engineering problems have not received much attention. This is the case studied
herein.

The goal of this paper is to develop a new three-dimensional constitutive model,
suitable for use within a Finite-Element(FE)-framework, which describes the thermo­
viscoelastic response of highly deformable continuous media, which is of special interest
within the scope of rubber elasticity.

The development of the model is centered around the construction of a Helmholtz free
energy function capable of accommodating anisotropic response and representing the
coupled thermomechanical properties of polymeric materials in the finite-strain domain
and in temperature ranges in which polymers exhibit stress relaxation. These characteristics
are observed in elastomeric (high-polymeric) solids, which are composed of a cross-linked
monolithic three-dimensional network-one example is vulcanized rubber in a temperature
range of IOo-I50aC, see, e.g., Tobolsky et at. (1944).

The present work is based on a continuum formulation of the macroscopic thermo­
viscoelastic behavior of rubber-like solids at finite strains and is phenomenological in spirit;
network defects (see, e.g., Mullins and Thomas (1960), Scanlan (1960)) or crystallinity
effects, which appear in a highly stretched rubber (with anisotropic material behavior) are
outside the scope of this paper.

The current approach employs nonlinear kinematics together with explicit thermo­
dynamical constitutive laws for dissipative materials based on rational thermodynamics
and on the concept of internal state variables, which goes back to Coleman and Gurtin
(1967). The additional internal variables, which are not measurable and observable in
phenomenological experiments, specify the thermodynamic state and are necessary to
describe an irreversible system, see, e.g., Schapery (1964) among others. For other
approaches see, e.g., Green and Tobolsky (1946), Koh and Eringen (1963), Bernstein et at.
(1964), Christensen (1980), Lubliner (1985), Simo (1987).

The theoretical study of this paper starts with an additive decomposition of the
thermodynamic potential into purely thermoelastic and non-equilibrium parts. This
approach is motivated by the concept in Simo (1987) which describes an isothermal finite­
strain viscoelastic model incorporating a damage mechanism. Given the thermodynamic
potential, constitutive relations for the stress, entropy and internal variables follow by the
standard Coleman and Noll argument, see Coleman and Noll (1963). The restrictions
imposed by the second law are then expressed by an inequality condition on the viscous
dissipation of the internal variable model. The viscous response is characterized by a linear
rate (constitutive) equation governing the time-dependent internal state of the material.
The evolution equation employed is of first order and is motivated by the viscoelastic theory
with linear kinematics, see Valanis (1972). The simple convolution representation of the
rate equation is numerically easy to handle, well-suited for large-scale computation, ensures
incremental objectivity and can be numerically integrated for the nonlinear regime using,
e.g., a second-order accurate mid-point rule, see, e.g., Simo (1987) and Govindjee and Simo
(1992). Furthermore, it is shown that the proposed structure of the thermodynamical
constitutive model is consistent with the second law of thermodynamics, which is an
essential contribution of this work.

In the next section the free energy function is decomposed within the scope of vol­
umetric/deviatoric finite elasticity, which is motivated by experimental observations. The
split is based on an exact multiplicative decomposition of the deformation in terms of
dilatational components and volume-preserving parts, initially proposed by Flory (1961).
This concept was systematically explored by Ogden (1984), Simo et at. (1985), Lubliner
(1985) and recently successfully applied in computational mechanics for the Ogden-based
multiparameter strain energy function by Simo (1987), Simo and Taylor (1991), Holzapfel
and Simo (1994).

The proposed formulation of the constitutive law is general in that it is valid for all
thermoviscoelastic materials in the large strain domain which can be characterized by a
continuous scalar function. A simple example using a Saint-Venant-Kirchhoff-type material
clearly shows a physical interpretation of the outlined nonlinear viscoelastic model as a non­
linear multidimensional generalization of the (classical) rheological model of Maxwell-type.
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configuration

Fig. I. Particle of a typical point in reference configuration and deformed configuration.

2. CONTINUUM FORMULATION

2.1. Motion, constitutive assumptions
Consider a continuum body composed of a thermoviscoelastic polymer material with

reference placement flJo C lR"dim (ndim = 1,2 or 3) and material particles XEafo, see Fig. 1.
Denote by fI',(X): flJ o x IR ---+ lR"dim a macroscopic motion of flJo in a time interval
t E [0, 11 C IR+ which maps any material point X to the point x = fI',(X) E 1R3 in the deformed
configuration flJ, = fI',(afo) C lR"d,m and denote by 0,(X) :afo x IR ---+ IR+ the absolute ther­
modynamic temperature field. Unless stated otherwise the reference configuration is
assumed to be stress-free with homogeneous reference temperature 0 o( > 0).

As a measure of deformation we consider the material deformation gradient for the
motion fI', and the symmetric right Cauchy-Green strain tensor defined as

afl',(X) IF,(X):=-- = 'l/fI',ax
in af x 0, ,

C,(X) := F;(X)F,(X) E M~im 0 [ 11
(1)

where M~im is the set ofndim x ndim symmetric matrices characterized by ndim real and positive
eigenvalues )'~dim-illustrated by the spectral decomposition C, = L~ = I A~N(A) (8) N (A) where
IN(A)I == I, see, e.g., Ciarlet (1988), Simo and Taylor (1991). The symbolic operator '1/(.)
of tensor analysis is introduced for the gradient of ( .) in the reference configuration and
will be used throughout our developments.

The constitutive response of the thermoelastic continuum body is assumed to be fully
elastic for infinitely slow deformation processes which is defined by a Helmholtz free energy
function (per unit reference volume) qJCXJ = qJCXJ(C" 0,): M~im X IR+ ---+ IR.

To characterize the thermoviscoelastic response of the polymer we introduce a con­
figurational free energy Y = Y(C" 0" r~), where {rn (rt = I, ... , m) are a set of internal
state variables each regarded as a strain tensor akin to the right Cauchy-Green strain tensor.
In addition, the relaxation of the polymer chains is assumed to be governed by m > I
relaxation (retardation) processes with given relaxation (retardation) times !o = !,(0) E(O,
(0) (rt = I, ... ,m), which are, in general, temperature dependent.

2.2. Balance laws
Independent of the constitutive equations describing a material, the motion and tem­

perature fields (assumed smooth) of a continuum body must satisfy local balance laws of
mass, momentum and energy.
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The local forms ofbalance ofmass and momentum, given in the Lagrangian description
(see, e.g., Truesdell and Noll (1965)), reads

with

p,(x)J,(X) = Po (X) }
in f!Jo x [0, 11,

Po!p,(X) = Div(F,S,)(fP" 0,) +Bo(X)

J;(X) = detC,(X) = [detF,(XW > 0,

(2)

(3)

where Po(X) : f!Jo-+ IR+ is the mass density in the reference configuration and p,(x) denotes
the mass density in the deformed configuration. Furthermore, J, is the Jacobian determinant
in f!Jo. In the momentum balance equation the operator Div (.) is with respect to the
coordinates X in PJo, S, denotes the symmetric second Piola-Kirchhoff stress tensor and Bo
denotes the prescribed body force (per unit volume) in the reference configuration. Here
and throughout the remainder of our developments we use superimposed dots to denote
ordinary time derivatives. Balance of angular momentum implies the symmetry condition:
S, = S;.

Balance of energy in entropy form (the local evolution of specific entropy I}, appears
explicitly) with the assumed presence of thermal gradients reads in the referential description

(4)

with PJl the given specific heat supply, H, the nominal heat flux vector, and £&int the internal
dissipation (local entropy production), which is zero for (perfect) elastic materials, see
Truesdell and Noll (1965), section 80 and p. 320. An alternative version of eqn (4), which
characterizes one form of the principle of dissipation, is

(5)

where e is referred to as the internal energy function, see Truesdell and Noll (1965), section
79. Relation (5) is known as the Clausius-Planck inequality and is one form of the second
law of thermodynamics.

To complete the initial boundary value problem of motion for a continuum body the
above set of nonlinear partial differential equations are supplemented by suitable boundary
and initial conditions for the velocity, the motion and the entropy. Also, when heat transfer
is considered a constitutive law for the heat flux is needed, which completes the continuum
description of the thermoelastic material with heat conduction and viscous dissipation.
A suitable constitutive equation motivated by experimental observations is the Fourier­
Duhamel law of heat conduction which is of the form

(6)

where Ko is the (reference) thermal conductivity tensor, which is positive definite. The
referential heat flux vector is consistent with the classical Fourier (dissipation) inequality
which in the reference configuration takes the form H, V0, ~ 0, and is a crucial restriction
on eqn (4), see Truesdell and Noll (1965), p. 295. For a thermally isotropic material the
conductivity tensor becomes Ko = ko(0,)I, where ko > 0 is the positive coefficient of thermal
conductivity and I is the identity tensor.

Note that for vulcanized elastomers ko is temperature-dependent; in particular, the
coefficient decreases linearly with increasing temperature, see Sircar and Wells (1981). For
a FE-simulation of the nonlinear heat-conduction equation which includes deformation
and temperature dependence for the heat flux see, e.g., Holzapfel and Simo (1994).
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3. MATHEMATICAL MODEL

We consider a thennoviscoelastic model defined by the Helmholtz-free energy function

(7)

Given that the thennodynamic state is characterized by the independent variables
(C" 0" rn constitutive laws for the Piola-Kirchhoff stress St, the entropy '1, (per unit
reference volume) and the internal stress Q: follow in a standard way, see, e.g., Truesdell
and Noll (1965) :

fJ6 0 x [0, Tj. (8)

The variables {Q:} (tx = 1, ... ,m) are interpreted as the non-equilibrium stresses in
the system and correspond-in analogy to the linear solid-with the internal history
variables r: via the constitutive relation (8h. The entropy at equilibrium is labeled as rtJ

•

In general a viscous solid generates heat in an irreversible manner through dissipation.
The viscous dissipation of the internal variable model which arises from the Clausius­
Duhem inequality, see Coleman and Gurtin (1967), is expressed using eqn (8h in the
following abstract inequality:

m m I

~int= I-Vr,y:t:= IQ::t:~O,
~=l ~=l

(9)

where t: (tx = 1, ... , m) denote the set of internal strain rates.
The simplest (fairly classical) evolution equations for the internal non-equilibrium

stresses, which are motivated by a linear viscous model (standard linear solid) with internal
variables, are of the fonn (see Valanis (1972), section 6, for an isothermal process):

(10)

where 'P' = 'P"(C" 0,) :M~im x IR+ ...... IR is the free energy function of the polymer material
which corresponds to the relaxation process tx with r, > O. Assuming instantaneous response
the initial internal stresses are given by: Q~ = 2 Vc'P"(Co, 0 0), The additional tenn on the
right hand side Q~pl t contains temperature dependent material parameters and vanishes for
isothennal processes. This second order tensor has to be detennined such that evolution
eqns (10) are dissipative and compatible with constitutive relation (8h. A successful FE­
implementation of this class of rate equations for the isothennal regime was presented by
Simo (1987) and for a model including damage variables by Govindjee and Simo (1992).
It has been shown that eqn (10) provides a good approximation of the physical behavior
in the large strain regime, see Simo (1987).

The simple structure of (10) admits a solution in the following (classical) convolution
fonn

with

Q: = exp [- t/r,]Q~ +JIf~, (11)
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(12)

Now, the main objective is to show that under suitable assumptions the proposed
viscoelastic model satisfies the thermodynamic restriction imposed by the second law of
thermodynamics (Clausius-Duhem inequality). In particular, we have to determine a form
for the internal configurational free energy Y which implies non-negative dissipation. This
is the essence of the following:

Proposition: Motivated by linear viscoelastic theory assume:

(i) The internal configurational free energy Y is quadratic in the internal strains P
(C( = I, ... , m) in the sense that

(13)

where J.l, defines a non-negative temperature dependent parameter and 0, /5'13 denote
the fourth-order identity tensor and the Kronecker delta, respectively.

(ii) The term Q~pll in evolution eqn (10)1 is of the form

(14)

(iii) The viscous dissipation function ~int :;?; 0 is of the form

(15)

where ,.,: is a coefficient associated to the :x-relaxation process and I ( .) 1
2

= (. ) :(').

(iv) The internal stresses evolve according to the proposed rate eqns (10) with (14).

Then the internal configurational free energy Y is of the explicit form :

m

Y = Y(C/> 0/,r~) = L [J.l,lr~12
- 2 VC 'P'(C/> 0/) : r~ +'P'(C/, 0/)]. (16)

a=l

Proof: Comparing relation (9h with (15) we obtain a dissipative evolution equation for
the internal strains:

m m 1
~int = L Q~ :t~ = L *IQ~12:;?; 0

,~l ,~1"',

(17)

Q~ :[t~-::Q~ ] = 0

Time differentiation of eqn (8)3 yields:

(18)

(19)

To obtain expressions for the right hand side of (19) consider integrating relation (13)
twice. This gives
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Y(C" 8 0 r~) = I [flo jr~ 12+0,(C" 8,) : r~J + Y*(C" 8,),
:x=1
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(20)

(21)

where 0, and y* are tensor and scalar-valued functions, respectively. Now, observe from
(20) that

where fl~:= Ofl,(8)jo8. Substituting eqns (13), (18h and (22) into (19) gives

• 0: Q~ Ct 'ex· •
Q, +2fl, ----; = - [2 Vc0,(C" 8,)] 2 - 2fl,r, 8, - Ve 0,(C" 8,)8,. (23)

'1,

By comparing this relation with evolution eqn (10) I' using (14) and (15)2 we observe that
the left hand sides are identical. Taking the right hand sides we obtain the following
important condition after integration with respect to time:

0,(C" 8,) = -2Vc'P'(C,,8,). (24)

Substituting eqn (24) back into eqn (21) and taking Y*(C" 8,) = L;;'= I 'P'(C" 8,) gives the
expression for Yin eqn (16). •

Now, with functional (16) and constitutive eqn (18h the model becomes:

m

'P = 'Poo (C" 8,) + L [fl,jr~ 12- 2 Vc'P'(C" 8,) : r~ + 'P'(C" 8,))' (25)
~=l

S, = 2Vc 'POO (C,,8,)
m

+ I [2Vc'P'(C,,8,)-4V2c'P'(C,,8,)r~]
:x=1

m

+ L ['1' (Co 8,)-2VclJ'(C" 8,) :r~-fl~jr~12J
,~I

with

O'P'(C" 8,) ,Ofl,(8)
'1':= - 08 and fl. :=~

Q~ = exp [- tjr,]QZ +£~ = lJ~t~

with

Yf~ = L+ exp [- (t - s)jr,J {:s [2 Vc 'P'(Cs> 8J]

d8 }-2fl~(8Jr~ ds
s

ds

1 1
r~ = -Vc'P"(C" 8,)- 2Q~

flo fl,

in [J6 0 x [0, T]. (26)
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Herein, 1'/' characterizes the entropy which is associated to the relaxation process rx.
Remark 3.1:

(i) Equilibrium. Regarding eqn (8)3 the condition for thermodynamic equilibrium is
Q~ = - Vra y(C" G" r~) IH'" ~ Q, which in view of eqn (25) implies

m

Vra'l'(Ct,Gt,r~);: L [2,u,r~-2Vc'l"(C"Gt)]IH'" = Q
::1:=1

(27)

(28)

Note that with eqn (18h we have t~IH'" ~ Q, which goes along with the theorem of
the thermoelasticlimit, see also Truesdell and Noll (1965) p. 371. In addition, regarding
eqn (9)2 or eqn (17)1' the dissipation vanishes at equilibrium, i.e., S&int ;: 0. In this case
the thermodynamic process is reversible and the continuum reacts fully thermoelastic.

(ii) Since the viscoelastic behavior of elastomers is characterized by a medium composed
of identical polymer chains, it is assumed that

where f3~ E(O, 00) are given non-dimensional constitutive parameters associated with
't, > 0, see Govindjee and Simo (1992). With assumption (29) the set of constitutive
relations (26) require only the specification of the Helmholtz free energy function '1''''
for the hyperelastic body, which can be a completely arbitrary polyconvex function of
C and G-a crucial advantage of the proposed model.

(iii) Regarding eqns (26)1 and (26h, we observe an additive decomposition of the stress
tensor and the entropy into equilibrium and non-equilibrium parts, respectively, which
results from the structure given in (7).

(iv) Furthermore, note that the final form of the derived internal configurational free
energy (16) Y involves a gradient of the functional '1". In view of a finite element
implementation the system of fundamental nonlinear eqns (26) necessitates an exact
linearization procedure for solving the problem within Newton's method. Conse­
quently, the (consistent) linearized tangent operators involve third derivatives of Y
with respect to the right Cauchy-Green strain tensor C,.

(v) A suitable thermodynamic potential for large strain and large temperature changes
and its FE-implementation is described by Holzapfel and Simo (1994). The potential
presented therein is based on the concept of entropy elasticity which falls within the
context of statistical network theory and is closely related to the classical strain energy
function proposed by Ogden (1972).

(vi) Recall that within the theory of finite thermoelasticity in general we observe three
different thermomechanical coupling effects (see, e.g., Holzapfel and Simo 1994), i.e.,
(vi.a) the influence of temperature on the stresses (thermal stresses), (vi.b) structural
thermoelastic heating (Gough-Joule effect) and (vi.c) geometric coupling, see eqn (6)
(influence of deformation on the heat conduction). In addition, the proposed vis­
coelastic constitutive model (25) incorporates (vi.d) dissipation and (vi.e) structural
viscoelastic heating defined by

m

9'vis:= - L G,[a2'¥/aGtar~]:t~.
a=l •
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4.1. Continuum basis, constitutive equations
Most amorphous cross-linked polymers have a significant different response in bulk

and shear. For rubber-like materials the ratio bulk modulus/shear modulus is often typically
of order ~ 103 (Cyr (1988», or higher. Consequently, the deformation response is nearly
incompressible. Furthermore, the real physical viscoelastic behavior of most of the poly­
meric materials occurs strongly in shear and weaker in dilatation, see, e.g., Malvern (1969),
p.313.

Motivated by these experimental observations it is most beneficial to split the defor­
mation locally into a dilatational and isochoric part, as originally proposed by Flory (1961).
In particular, the deformation gradient at a point X E fila at time t < T is expressed as a
multiplicative composition of isochoric and dilatational factors, i.e.,

with

detF\(X) == I,

(30)

(31)

where F, describes the isochoric part (distortional response) of the deformation gradient
and the Jacobian determinant J,(X) represents the dilatational part (volumetric response).

In view of eqns (lh and (30) the strain measure C, corresponding to local isochoric
deformation is

(32)

For future reference we note that the partial (Frechet) derivatives of C, and J, relative to C
are of the following form (see also Truesdell and Noll (1965» :

8cC,(X) = J- 2
/3 (X~[l~ -~ C,(X) ® C,-l (X)j}.

28cJ,(X) = J,(X)C, (X)
(33)

For notational simplicity, the subscript ('), will be suppressed throughout the remain­
der of the paper. Now, let us consider a specific free energy function qJoo of the form, see,
e.g., Holzapfel and Simo (1994) :

where Uoo represents a convex volumetric response function, 'P oo characterizes a poly­
convex response function describing shear deformations of the polymer (see, e.g., Ciarlet
(1988), chapter 4, for terminology), and the additive potential roo represents a purely
thermal contribution.

A straightforward application of the chain rule, relations (33) and (34), and basic rules
of tensor analysis yield the following expression for the second Piola-Kirchhoffstress tensor

8 00 = 2VcqJOO(C,8) = JpC- 1 +J- 2
/
3 Dev[2Vc'P00 (C,8)j j, (35)

. 8U OO (J,8) I
WIth p:= aJ and Dev['j:=(')-3 tr [(')C]C- 1

where p denotes the hydrostatic pressure, Dev[ 'j denotes the deviatoric projection operator
for a tensor in the convected description and tr[ 'j denotes the trace of the tensor [ 'j.

Performing a push-forward operation using relation (30) we obtain an expression for
the Kirchhoff stress tensor at equilibrium. Namely,
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-rOO = F[2Vc'Poo (C,e)]FT = JpI+dev[-r OO
] }

with dev [-r 00 ]:= F{Dev [2 VeqJoo(C, e)]}FT
'

(36)

where dev['] is the deviator in the spatial description.
We shall assume a material which exhibits a viscoelastic behavior only in shear­

consequently the volume change of the material may be considered fully thermoelastic
(time independent). In addition, the purely thermal potential po is also considered to be
time-independent. Hence, the deviatoric internal variables {Q"} (li = 1, ... , m) are governed
by the following dissipative evolution equations

.:. Q" d - - - del~"+ 'fa ~ dt {J-2/3 Dev [2 Ve'P"(C, e)]} -211~(e)Pdt

Q"lt~O = Qo
in &60 x (0, T], (37)

which constitutes an appropriate counterpart of eqns (10) with (14). The constants
f" E(O, 0Ci) (li = 1, ... , m) define the characteristic relaxation times for the m relaxation
processes associated with shear response of the polymer material and il" denote temperature
dependent parameters.

Here we note that while the preceding developments are specialized to deviatoric
viscoelastic response, the concepts may be easily extended to design models which account
for dilatational viscoelastic response.

According to previous considerations the non-equilibrium deviatoric stress Q" and the
associated internal deviatoric history variable f" (which depend on the temperature and the
deformation history) are related by the flow equation

(38)

where the parameter iJ: has the characteristics of a Newtonian shear viscosity.
Within the preceding framework we next derive the time-dependent second Piola­

Kirchhoff stress response using (8)1> the configurational free energy of eqn (16), and the
preceding assumptions on the viscoelastic response. Noting that the deviatoric part of
S":=2Vc'P"(C,e) is given as 2VcqJ"(C,e) = J- 2

/
3 Dev[2VeqJ"(C, e)], we use (35)1 to

obtain

S = Soo+ f {J-2/3 Dev[2VeqJ"]-C~evf"}
a:=l

(39)

where C~ev denotes the deviatoric part of the material tangent moduli related to the li­
relaxation (retardation) process. Performing a push-forward operation using the multi­
plicative decomposition (30), and employing the definition for dev[-r'] associated with (36)z,
we obtain the time-dependent Kirchhoff stress as

m

-r = -reX) + I {dev [-r']-F(2 vc{r 213 Dev [2 VeqJ']}f")FT
}.

x=1

(40)

Regarding the set of constitutive eqns (8) and (26) the stress is supplemented by the
entropy 1] and the constitutive law for the deviatoric internal stress Q", which is derived in
an analogous manner:
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Q·=exp[-t/r.]Q~+if·=~:f·, (42)

with

- r' {d 2'3 - - - d0s }
Yf~ = Jo+ exp[-(t-s)/r,] ds[F ' Dev[2Ve'P·(C",0s)]]-2.a~(0s)r~& ds (43)

and

- 1.3 - - I -P = -::;-J- 2
/ Dev[Ve'P'(C,0)j- ~Q'.

J1., J1..
(44)

In addition, using the free energy function (34) together with the assumptions on the
viscoelastic response, eqn (29) becomes

where the constants p~ E(O, 00) (ex = I, ... , m) define the free energy factors for the retarded
history associated with shear response.

For convenience, Box I summarizes the preceding coupled viscoelastic model within
the context of a dilatational/deviatoric split. The model accommodates large strain and
general anisotropic response.

Remark 4.1:

(i) It is well established that the phenomenon of chemical stress relaxation of cross-linked
vulcanized rubbers is temperature dependent (see, e.g., Tobolsky (1960), chapter 5). The
stress-decay which is characterized by a discrete relaxation spectra with m temperature
dependent relaxation times can be explained by chemical rupture of the three-dimen­
sional network.

In the low temperature range of the rubbery state the network show (nearly) no
stress relaxation, but data which are based on stress relaxation-experiments for vul­
canized rubbers at constant deformation have indicated a rapid stress-decay in the
temperature range IOo-I50aC, see Tobolsky et al. (1944). Furthermore, experiments
have shown that stress relaxation is independent of both the deformed state of the
network and the absence or presence of carbon black fillers in the rubbers, Tobolsky
et al. (1944). An experimental investigation of the effects of temperature on the consti­
tutive response for silicon rubber was presented by Lee et al. (1966).

The relationship between the relaxation time and the absolute temperature is
commonly characterized in the form of an exponential function-by the Arrhenius
equation

r = A exp [Eact / R0j, (46)

where A, Eacl and R denote a numerical constant characteristic of the reacting subst­
ances, the activation energy of the relaxation and the thermodynamic gas constant,
respectively. The form of the functional dependence of r on 0 predicts the physical
observation that viscoelastic effects occur faster as 0 increases. Equation (46) is rep­
resentative of most polymer relaxations (Lee et al. (1966), Tobolsky et al. (1944».

To incorporate the Arrhenius eqn (46) into the proposed dissipative evolution
eqns (37) we suggest the convenient concept of "modified" time in which the relaxation
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time is hold fixed; for more details see, e.g., Knauss and Emri (1981) with more
references therein. .

(ii) The flow eqn (38) is analogous to the classical Newton's law, where f' is interpreted
as the shear strain rate of a dashpot and the quantity if: > 0 E(O, (0) is interpreted as
the coefficient of Newtonian shear viscosity of the cx-relaxation process. The viscosity
is related to the relaxation time 'E and the modulus 2ft, from rubber elasticity theory
via 2f1, = fi:/'E, which is motivated by a standard linear viscoelastic solid (Maxwell­
model).

The vast majority of polymer behavior exhibits the well-known Newtonian "shear­
thinning" phenomenon (pseudo-plasticity) which means that with respect to Newtonian
characteristics the shear flow is faster as Q increases, see, e.g., Barnes et al. (1989),
chapter 2. A model for both Newtonian and non-Newtonian materials is the popular
'.'power-Iaw"-model (see, e.g., Rosen (1979) with further references therein): Q = K
fn, where nand K are parameters called the power-law factor or the flow behavior
index and the "consistency", respectively. This model is widely used for engineering
applications because it can be fit to experimental results for various materials and
reduces to a Newtonian fluid for n = I with K known as the viscosity. Shear-thinning
occurs ifn < I-for typical parameters see Barnes et al. (1989), p. 22. For an overview
of different types of rheological models the reader is referred to Rosen (1979), Schoff
(1988), p. 455.

4.2. A simple example, rheological interpretation
The goal of this section is to present a physical motivation of the derived viscoelastic

model. Consider the following free energy function:

\{l'(C, E» = ~ E: (:'(E» :E, (47)

where the Green-Lagrangian strain tensor E is associated to the right Cauchy-Green strain
tensor via the well-known relation: 2E = C - I. The superscript cx refers to a relaxation
(retardation) process. In (47) (:' denotes the positive definite elasticity tensor, which has
temperature-dependent components of the assumed form (:'(E» = 2J.L,(E»~, where
J.L,cE» > 0 characterizes the temperature dependent shear (Lame) modulus of the vis­
coelastic "element" cx.

The model (47) is the generalization of the St. Venant-Kirchhoffstrain energy function
to the thermoelastic regime, see, e.g., Ciarlet (1988) p. 155 for the St. Venant-Kirchhoff
material. This classical isotropic nonlinear model is often used for engineering structures.
Note that the Jacobian determinant (3) does not appear explicitly in this model. For the
purpose of this section which is to give a physical interpretation of the proposed framework
of thermoviscoelasticity based on the specific constitutive law (47), only the shear moduli
are attached with the elasticity tensor.

By using eqn (16) the configurational energy with model (47) is

m

Y = Y(C,E>,P) = LJ.L,(E»IE-PI 2
.

Cl!=l

By a straightforward differentiation of Y with respect to P, the non-equilibrium stresses
follow from (8h together with eqn (l8h as

(48)

which, in view of (9h, generates a positive dissipation ~int = L:;'= ,IQ'1 2 /11: ~ O. From (10)
and (14) the evolution equations for the non-equilibrium stresses are
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Box 1 : Coupled model problem for polymers within finite-strain thermoviscoelasticity-formulation based on
volumetric-isochoric decomposition.

(i) Helmholtz free energy function:

'¥(C,0,r') = ,¥00(C,0)+ t !J1,lr,,2-2V'c'¥'(C,0) : r'-+-'¥'(C, 0)]
a=l

with

,¥00(C,0) = U oo (J,0)-+-,¥OO(C,0)-+-TOO(0), '¥'(C,0) = P':",¥OO(C,0)

(ii) Second Piola-Kirchhoff stress [F = ;-1/lF; C,= FTF = ;-2f3Cj :

m

S = soo-t- L Px{J-2 i l Dev[2V'c,¥OO]-Coevr'}
a=l

with

(iii) Entropy:

m

1/ = I/oo-+- L [P':,,(fiOO-2V'cii x :r")-)1~lr'12]
0:=1

with

(iv) Dissipation:

~ I - 2
fZl;nl = L.... ~IQ"I ~ 0

0:= 11'Ja.

with

Q' = exp [- t/i,]Qo -+-.if' = Ii:!"

and

r I - - 1_"=-p'J- 2IJ Dev[V' 'l'oo] __Q'
)1, 00 c 2)1,

(v) Evolution equation:

The stress response at time t is obtained with eqn (26)[ and definition (35)]

m

8 = 8 00 + L 2,u.(8)(E-P)
.~] l~__,V'-_..J

d:Q'[eqn (48hl,

(49)

(50)
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woe +=i> €

+=>,yl

Ql, TJt
a

Q2, TJ;
a.... ~

• +=>,2
•
•

QOi, TJ~

Wo-,2J.10- +=>,0-

To- = TJ~/2J.10-

Fig. 2. Generalized Maxwell model-one-dimensional rheological interpretation.

which can be regarded as a superposition of the equilibrium and non-equilibrium stresses.
Note that the internal variables Q' vanish at t -4 00, as shown in Remark 3.1 (i). Regarding
the entropy generated by the relaxation process, we use eqn (26h to obtain
'1 = '1°C+L;=d'1'+2Jl"(E:P-~IPI2)], with '1'(C,0) = -Jl"IEI 2, which completes the
thermodynamical description.

4.2.1. Rheological interpretation. A rheological representation of the proposed
phenomenological thermoviscoe1astic model can be understood as a generalization of a
one-dimensional linear model, as illustrated in Fig. 2. The stored energy function associated
with viscoelastic "element" C( is assumed to be \{I'(e, 0) = H2Jl.(0)e2

] and \{IX! = \{IOO(e, 0),
where the infinitesimal strains are denoted by e and the spring-stiffnesses in the elements
are labeled by Jl•.

The stresses in the dashpots Q' follow merely by equilibrium from Fig. 2 and are
governed by the constitutive law:

(51)

with coefficients '1: > 0 for the viscous elements and with the inelastic strain y' for the C(­

device. Time differentiation of (51)!l use of (51h and relation 2Jl. = '1:/" yields the evolution
equations for the internal variables

Q'+ Q' = 2Jl.(0)e+211.(e-y').
'.

(52)

With respect to the thermoviscoe1astic device of Fig. 2 the total stress (J is obtained by
superposition of the equilibrium stress (JOO:= 8IjJOO(e, 0)/oc and the non-equilibrium stresses
Q" in the dashpots by relation (balance of forces)

m

(J = (JX! + L Q".
0:=1

(53)

For the thermostatic limit Q' vanishes and the equilibrium stress (JOO associated with
potential \{IOC remains in the spring.
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Note that the equilibrium equation and the classical constitutive relation for shear
viscosity (51), the evolution eqns (52) and the total stress (53) remarkably constitutes
the one-dimensional linear counterpart of eqns (48)-(50), respectively. In this sense, our
proposed material model which is capable to describe relaxation (retardation) processes
within the coupled thermomechanical regime can be viewed as a nonlinear multi-dimensional
generalization of the linear thermomechanical device illustrated in Fig. 2.

5. SUMMARY AND CONCLUSIONS

A coupled thermomechanical nonlinear constitutive model for dissipative continuous
media capable of accommodating stress-relaxation in large strain domains has been
presented. The mathematical structure of the three-dimensional viscoelastic model is based
on the concept of internal state variables and has a sound thermodynamical foundation.
The free energy function is decomposed into a fully thermoelastic part and a configurational
free energy, which governs the viscous response (only in shear) of the continuum. Further­
more, the model is written within the framework of volumetric/deviatoric finite ther­
moelasticity. A particular example furnished by a free energy function of a St. Venant­
Kirchhoff-type material has shown a physical interpretation of the physically nonlinear
thermoviscoelastic model. A rheological interpretation was given within the linear regime.

Our main concern was to develop a constitutive model that was compatible with the
second law of thermodynamics and well-suited for numerical treatment within the Finite­
Element-method. A numerical realization is the goal of future work.
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